NATIONAL
xNST RUMENTS

Architectures for Designing
LabVIEW™ Applications

Kevin Hogan
Staff Software Engineer — LabVIEW

What Are Design Patterns?

“...simple and elegant solutions to specific problems in
... software design. [They] capture solutions that have
developed and evolved over time..."

—Design Patterns, Gamma, Helm, Johnson, Vlissides

—
Why Use Design Patterns?

* They represent “tried and true” solutions
* They free you from “reinventing the wheel”

 They make it easier for others to read and modify your
code

—
N.CONT] MATHOMAL
INSTRUMENTS

Design patterns represent techniques that have proved themselves useful time
and time again. They typically have evolved through the efforts of many
developers and have been fine-tuned for simplicity, maintainability and
readability. Furthermore, as a pattern gains acceptance, it becomes easier to
recognize. This recognition alone helps other devel opers (and you!) to read
and make changes to your code.

—
Ul Event Loop

» Used to handle user interaction, for example:
— User-initiated control value changes
— Mouse moves and clicks
- Keyboard events
 Many advantages over polling:
— Less processor load
— No lost events

e —
N.CONT] MATHOMAL

INSTRUMENTS

The Ul event loop is a powerful and efficient method for handling user
interaction with aLabVIEW program. It’s useful for detecting when a user
changes a control’ s value, moves or clicks the mouse, or presses a key.
Because the event loop wakes up precisely when an event happens and sleeps
in between, you don’t have to read control values over and over again (i.e.
“polling”) in order to detect when a user presses a button. This will allow you
to use the processor much less without risking loss of interactivity.

Standard Event Loop

[[0] "Cantral” : ¥alue Changed ~p———

Time
CHRef
Qldval React to new
Mewtal control value. .,

N.CONT] MATHOMAL

INSTRUMENTS

The standard event loop consists of an event structure contained in awhile
loop. The event structure is configured to have one frame for each category of
event you' d like to detect. Each frame contains “handling” code that executes
immediately after an event occurs.

Note that it’simportant to make sure that the loop termination condition is
computed after the handling code completes — one effective method isto
compute the condition within the event structure. Alternatively, you could use
a sequence structure to ensure that the event structure firesfirst, or ssmply add
atimeout event to the structure.

—
Standard Event Loop Caveats

* Keep event handling code short and quick:
- You can lock your Ul if you take too long!
— Combine this pattern with producer/consumer if you need to

» Terminating the Event Loop:

— Compute the loop end condition in your event handling code
(best for stand-alone loop)

- Use a sequence to ensure that the loop-end condition
computes after the event handler fires, or

— Include a timeout event

s §
N.CONT]
/ MNATHOMAL
INSTRUMENTS

It's easy to shoot yourself in the foot with the event loop, though. For instance,
if an event structure is unable to handle an event that it isregistered for (either
because it’ s not running, or because it’ s busy handling another event), it will
lock any Ul elements that could produce that event. Effectively, this means
that if you don’t handle events quickly, you could lock up your entire UI. This
is easy to get around though — just do the bare minimum of work necessary to
handle an event asit comesin (“synchronously”), such as graying out other
controls that will be affected while this event is being handled. Any further
processing that could delay the event loop should be handled el sewhere. One
good method is to send the message via a queue to a separate parallel l1oop —
we' |l see more of that with the “ Producer/Consumer” pattern.

Another easy way to make trouble for yourself isto allow the loop termination
condition to be computed beforethe event structure fires. This can cause the
event loop to iterate one more time than you expected, and unless you have
included afairly short timeout event (200 ms or less), this can hang your VI on
exit. To get around this, compute the loop end condition within all of your
event handling code, use a sequence structure to ensure that the event code
firesfirst, or include atimeout event.

State Machine

» Used to implement decision-making
algorithms, for example:
— Diagnostic routines
— Process monitoring and control

* Appropriate for algorithms described by flow
chart or state diagram

— =
N.CONT] MATHOMAL

INSTRUMENTS

The state machine pattern is one of the most widely recognized and highly
useful design patternsfor LabVIEW.

This pattern neatly implements any algorithm explicitly described by a state
diagram (flow charts work, too). More precisely, it implements any algorithm
described by a“Moore machine” —that is, a state machine which performs a
specific action for each state in the diagram. (Contrast thiswith the “Mealy
machine” which performs an action for each transition.) A state machine
usually illustrates a moderately complex decision making algorithm, such as a
diagnostic routine or a process monitor.

Example State Diagram

D T
{ AREM }
B

.l

':: lr-l Pcm-u] g
e
dcﬂhsll m,“':
ool anEg
Hmu:isrmm
T 1
oD “’d*”"“’" menling b oy
%m@f/

Controller for Buck Rogers’ Laser Cannon

Here's an example diagram for a“Moore” machine that describes a control
algorithm for alaser cannon — it should fire the cannon continuously without
allowing it to get dangerously hot. Notice that in this diagram, the “ states”
(ovals) describe actions that are performed when the control processisin that
state, whereas the “transitions’ (arrows) simply describe when and how the
process can move from one state to another.

Standard State Machine

Thecise Haies sy
oroa e For mach viain
o e
Ao
i
e
| I:muml-nuul\
e e) T catpiclibe
[T
! smponiiee et e’ |
Thde it regiies "'-. J e et od e

A

The standard LabVIEW state machine consists of alarge while loop, a shift
register to remember the current state, and a case structure that holds separate
code to run for each state. (If you use an enum to pass around the value for the
current state, the pattern becomes much easier to read —and if you use a
typedef, you only need to edit the typedef once in order to add another state to
the machine)

Note that each frame in the case structure must contain code for deciding what
state the process should go to next. We call thisthe “transition” code, and
since there’ s more than one standard way to implement that, we'll leave it for
the next slide.

10

Transition Code Options

1o B B
Hesp, i "t ot g b
Hiae tha Tai” sioda b dbasard detme
Py
Poes llp sbds E .
CRE

Hes e “Ind” shitw crald
malo nary dfasrd e

e —
N.CONT] MATHOMAL

INSTRUMENTS

Each of these case structures shows adifferent standard type of “transition code” —i.e. code
that chooses the next state for the state machine.

Thetop |eft code clearly showsthat the“Init” state has only one transition, and hence goes
directly to the “Power Up” state without making any decision atall. The top right code
switches between two possible transitions— the “ Init” state will go to the “ Shut Down” stete if
the“ Stop” button has been pressed, but otherwise it goesto the “Power Up” state.

The code at the bottom left isalittle more complicated, but still acommon LabVIEW
construct. The code for this state returns an array of boolean values, one for each transition we
could take. Along with that array of boolean valuesis another array of enum constants
specifying the new states where each possibletransition could go. The index of thefirst “ True”
boolean in the array correspondsto the index of the new statein the array of enums... (Well,
almost, but you can figure out the details yourself — just remember that the “ Search Array”
function will return—1 if the valueis not found).

The code at the bottom right is functionally equivalent to the codeto itsleft. It consists of a
case structure embedded in awhileloop. The case structure contains one diagram for each
transition arrow that leaves the current state. Each of these di agrams has two outputs—a
boolean value which specifies whether or not the transition should be taken, and an
enumerated constant which specifiesthe state to which the transition goes. By using the loop
index asinput to the case structure, this code effectively runs through each transition diagram
one by one, until it finds a diagram with a“ TRUE” bool ean output and then outputs the new
state to which that transition goes. (Note that it isimportant to make sure the last transition
always outputs a TRUE vaue). Though this code may appear dightly more complicated than
the code to the left, it does offer the ability to add namestotransitions by “casting” the output
of theloop index to an enumerated type. Thisallows you to add “ automatic documentation” to
your transition code.

11

State Machine Demo

« StateMachineExample.vi

12

Master / Slave

» Used to decouple processes that should run
at different rates (asynchronously)

—for example, responding to user interface
controls and collecting data simultaneously

— 4
N.CONT] MATHOMAL
INSTRUMENTS

The Master/Slave pattern is generally useful when you have two or more processes that you expect to run
continuously but at different rates.

For example, suppose you want to write an application that measures and logs a slowly changing voltage once
every five seconds, acquires a waveform from atransmission line and displaysit on agraph every 100 ms, and also
provides a user interface that allows you to change parameters for each acquisition aswell as providing the ability
to bring up aprint dialog to print various controls displayed on the panel. Y ou could, conceivably, put both the
voltage measurement and the waveform acquisition together in one big loop and only perform the voltage
measurement on every 50" iteration of the loop. However, if the voltage measurement and log take longer to
complete than the single acquisition and display of the waveform, then the next iteration of the waveform
acquisition will be delayed because it cannot begin before all of the code in the previous iteration completes.
Secondly, this architecture would make it difficult to change the rate at which waveforms were acquired without
changing the rate of the voltage log.

The standard “ design pattern” approach would be to put the acquisition processes in two separate loops, both of
them driven by a master loop receiving input from the Ul controls. This ensures that each acquisition process will
not affect the other, and that any delays caused by the user interface (for example, bringing up a dialog), will not
delay any iteration of the acquisition processes. The power of using this pattern is that it separates the data flow of
your diagram into independent processes. However, in order for these to communicate, you will have to use some
form of globally available, shared data. (e.g. locals, globals, occurrences, notifiers, and/or queues). This does break
LabVIEW'’s dataflow paradigm, leaves the door open for race conditions, and incurs alittle more overhead than
passing data by wire (acquiring mutexes, and so on).

The master loop could itself be asimple event loop or a state machine that incorporates event gathering as one of
its states. Alternatively, the master loop could even start up aseparate event loop that runs independently from it.
Thislast pattern would probably be the best choiceif the master loop is a state machine that gathers needs to gather
Ul event information in more than one state. Most importantly, you need to make sure you specify at the outset that
only one loop will write to any given piece of shared data. Typically, the master loop writesto all shared data, and
slave loops read the data.

13

Master / Slave — The Big Picture

;ﬂr—"”ﬁ'wk
%m::::ma
R
o =
= ==
i bt

-\1:. __1.___.:1._,_/.
e

Shweloop ~ .
ooty sguion, oond d clads SN, 1.'
b chak, ke, todik, aic.] lI,/

The big picture — one master loop drives one or more slave loops,
communicating via some shared data depot.

Variations on thisinclude having loop A control loop B which controlsloop C,
and so on. Y ou could also design “Peer loops” which communicate back and
forth to each other, but you must make sure that two loops may not write to the
same data depot at the sametime. A good policy isto make sure that no more
than one loop may write to any given piece of shared data.

14

Master / Slave Synchronization

@l

-,

= T =
Setup
I--
Ezad—"
E—-:mh Apcpmitiar, .
Lop@ng, eti, s,

m — " L

Sometimes a Master/Slave application may require the slave loop to be halted
while the master loop performs initialization or reset routines. This can often
be done neatly by using occurrences.

The above diagram shows an example that delays the start of the slave loop
until aninitialization routine is compl eted.

15

Master / Slave Example

* SynchLoops.vi

This example is slightly more complicated than the previous slide — it uses
occurrences to not only delay the start of the slave loops, but also to turn them
on or off during the execution of the program.

16

Master / Slave — Key Elements

» Consists of parallel loops

— Writer loop can communicate with reader via
locals, globals, occurrences, notifiers, queues

« Writer loops

— It is best for only one loop to write to any given
local or global variable

— If both loops must write to a variable, use a
semaphore to prevent race conditions

— 4
N.CONT] MATHOMAL
INSTRUMENTS

The Master/Slave pattern consists of multiple parallel l1oops, each of which
may drive processes at different rates. Since communication of data between
these processes breaks data flow, it must be done by writing to and reading
from globally available data pools—i.e. locals, globals, occurrences, notifiers
or queues.

Be careful, however, if more than one loop must writeto alocal or aglobal
variable. If both loops try to write to the variable at the sametime, there’ s no
telling which value may ultimately get written! (Thisis known as arace
condition.) To avoid this situation, place an *acquire/rel ease semaphore’ pair
around any code that writes to the global to ensure that no one attempts to
writeto it at the sametime.

17

I —
Producer / Consumer

» Used to decouple processes that produce and
consume data at different rates

» Consists of parallel loops
— One loop writes data to a queue while the other reads

—
N.CONT] MATHOMAL
INSTRUMENTS

The Producer/Consumer patternisreally just a subclass of the Master/Slave
pattern where the main communication between the loops is via queue. Using
gueues rather than globals to pass data provides a buffering effect, but if the
data writer occasionally produces data faster than the reader can processit,
datawill not be lost. This can be especially useful for handling Ul events that
take along time to complete (e.g. printing in response to a user).

18

Producer / Consumer Big Picture

=..
acguni}

=]

I

Consume Daka...

One loop produces data (via computation, DAQ, and so on) and puts the data
in the queue.

The other loop waits until thereis datain the queue. Then it pulls the first
element out of the queue and processesit.

It just doesn’t get any simpler than this, folks!

19

Producer / Consumer Example

 ProduceConsume.vi

20

Queued Message Handler

» Often handles events generated by the
user interface, but not limited to this.

» Useful when the system handles input
events with a well-defined sequence of
actions

» Similar to the Event Loop — but allows finer
control over message order.

— 4
N.CONT] MATHOMAL
INSTRUMENTS

Another popular pattern isthe Queued Message Handler. (This pattern is often referred to as a
“Queued State Machine”, but because it need not adhere strictly to a state diagram, | prefer to
giveit adifferent nameto avoid confusion). This pattern has been discussed quite abit in
various issues of LabVIEW Technical Resource (LTR). It ismost commonly used to
implement code for auser interface, but you certainly don’'t need to limit its use to this!

It isimportant to note that the behavior of the Message Handler isvery similar to the event
loop — various messages (events) are queued up, and they are handled one by one in the order
that they exist in the queue. Furthermore, each sub-diagram in this pattern represents a
handling routine, just like the Event Loop.

So what’ sthe difference? Why choose one of these over the other?
Here' s the scoop:
Event Loop—
+ simpler to configure
- handles eventsin FIFO (First In, First Out) order
- limited to Ul messaginginLV 6.1
Queued Message Handler —

+ alows more control over order in which messages get handled (useful for error
handling/recovery)

+ handles any user defined message

+ can be configured to work in parallel with Event Loop, handling messages from the Ul
asynchronously

- morework for initial setup

21

]

Standard Queued Message Handler

e Ensane, A el

& 5 el auk "o Evend”
canm phich vall e called

TREE FEhe Qe b Bnpty,

ot b) (T -EI@- | =T —
\ 7 -"_‘-H,_d—-:‘_'l. “m

ol naed mat
s i mn inikial e Pyt Evwent
=

mEmags - Lt CEvant Stnchas
[PRE Ty o o e ed Rem from

B ara el Evani Loopd

i G e

e

niL.com

 ni.com } waTIoNAL

The Queued Message Handler consists of alarge “while” loop, an internal
“Case’ structure, and a shift register on the while loop that holds the queued
messages. (note that if you use a LabVIEW queue rather than an array of
strings, you will not need the shift register). For each message that may be
sent, the case structure contains one diagram with appropriate code to handle
the message. The case structure may also have a default diagram which will
gueue up new eventsif the queue is empty.

Each iteration of the loop removes the top message from the queue and runs
the proper handling diagram in the case structure. Handlers that have a
“Default” or “No Event” frame will execute this code when the queue is
empty. The loop terminates when the “ Exit” message comes to thetop of the
queue.

22

Queued Message Handler Demo

* QueuedMessageHandler.vi

23

]

Queued Message Handler — Key Points

* Terminate the loop by checking the latest
message, not by polling a control

* You may generate new messages when
handling a message — but be careful!

— 4
N.CONT] MATHOMAL
INSTRUMENTS

Two key points to remember when creating a Queued Message Handler:

First, the loop should be terminated by checking the latest message rather than
polling acontrol. This architecture allows you to execute any necessary
cleanup code (for example, shutting down parallel loops) before shutting down
the main loop.

Second, you may generate new messages inside the handler code for a
message. Thisgivesyou alot of flexibility in designing event handling code,
but it also makes it possible to generate an infinite cascade of messages which
would effectively hang the user interface. A good rule of thumb might be to
require that messages generated by a handler routine should never generate
new messages of their own.

24

“Daemon”

o, B + Used to create and launch
. " applications that run invisibly in the
| background, for example:

._ - Auto-save utility
L i | — Periodic back-up service
Har

— Garbage collection of temporary files
ioad igniaees o Typically perform low-priority

monitoring and/or maintenance
services

The “Daemon” pattern is an especially powerful concept in LabVIEW —it
allowsyou to run an invisible VI in the background to take care of routine
monitoring and/or maintenance services. Combined with VI Server, the
daemon pattern alows you to create some truly amazing applications.

25

Standard Self-launching Daemon

[lzsion et opens
rele=nces bo lael.
-)
u@ iFF.

m Do Dimeron Shat..

Zothat i & ol puaged
|:-| Fram rerony when i |
= oo itz flant parel

* Key point —a Daemon must keep an open reference to
itself to keep from being purged

Hereis some sample code to help you create self-launching daemons. Notice
that the daemon obtains a reference to itself before closing its front panel — this
prevents LabVIEW from removing it from memory before it has a chance to
run the daemon code.

Note, however, that this daemon must briefly show its front panel while it
obtains a self-reference on launch —this problem can be resolved by using a
“launched” daemon pattern shown on the next slide.

26

Standard Launched Daemon

* Key points —
launcher must
transfer
responsibility for
reference to
daemon VI.

« Launcher must not T
close reference to &ﬁmw J
daemon VI

Here is some sample code to create diagrams for a daemon launcher and the
launched daemon itself. Note that the daemon does not have to obtain a
reference to itself —thisis because the launcher obtained the reference and

then just transferred responsibility for closing the reference to the daemon V1.

To transfer ownership of the daemon VI’ sreference, set “ Auto Dispose Ref”
to true when you run the daemon. It is very important that the launcher does
not close the reference to the daemon VI.

27

Launched Daemon Example

* LaunchSneezy.vi

28

—
Proxy

» Used to defer load-time cost of infrequently called sub-
Vis

 Used to hide details of remote communication

e —
N.CONT] MATHOMAL

INSTRUMENTS

The Proxy pattern is generally used to defer loading of subVIsuntil they are
needed by your program. This technique, sometimes called “lazy | oading,” can
dramatically decrease theinitial time it takes to load your application. Note,
however, that this has the drawback of incurring aslight delay the first time
you call each deferred subV1.

In addition, the Proxy can be used to simplify the creation of a distributed
application by hiding the details of the remote communication.

29

Standard Proxy

mnlmﬁéﬂ_' e

I:\ Sioni caled
with no o

« Stores reference to real VI
* Loads the VI only on first call

N.CONT] MATHOMAL

INSTRUMENTS

A proxy VI stores areference to thereal VI —you can do thisin LabVIEW by
using an uninitialized shift register.

The proxy first attemptsto call thereal VI by reference. If thisfails (usually
meaning the reference is bad), the proxy attemptsto obtain avaid reference to
the VI and call it again.

Note that since the Proxy uses a Call By Reference node to call the subV1, you
could easily re-configureit to call asubVI located on a separate machinein
your network. This lets you move quickly and easily from a single machine
application to adistributed app without having to modify your main
application at al!

30

—
Splash Screen (Launcher)

» Used to replace the LabVIEW load dialog with a
custom dialog

* Displays application name, version, and load progress
as large application is loaded

» Closes itself after application starts running

niL.com

MNATHOMAL
INSTRUMENTS

The Splash Screen (or Launcher) pattern allows you to replace LabVIEW’s
load dialog with a custom window tailored specifically for your application.
Like LabVIEW’ s load dialog, it can be configured to display how much of the
application has been loaded.

31

Standard Launcher

5 LA e A

....... V1 fomi el ;4; armisrn -4 .m 2 G

ey PR

|.r.-1-:r... T |.|‘..:|,|
Je gy n gy by by g v vl by

E

e —
N.CONT] MATHOMAL

INSTRUMENTS

This diagram (taken from LabVIEW Technical Resource), ismuch less
complicated than it looks. It assumesthat all of the subVIsfor your application
are stored in one directory, and loads them all one by one. As each subVI is
loaded, an indicator on the Launcher changes to show load progress. Itis
important that the top level VI isnot loaded in this step because loading it
would load all of the subVIswithout updating the launch screen. The launcher
then loads the top level VI. It opens the front panel of the top level VI so that
the application is not purged from memory when the launcher closes. Finally,
the launcher runs the application and, without waiting for the app to finish,
closesits own front panel. Aslong as no other VI has areference to the
launcher, thiswill cause the launcher to exit memory.

32

Patterns Wrap-up

+ Ul Event Loop

« State machine

* Master/slave

» Producer/consumer
* Queued message handler
» Daemon

* Proxy

» Splash screen launcher

33

I —
When Should You Use Them?

 Whenever you can find one that fits your problem

* Do not assume that the patterns presented here are
the only solutions available in LabVIEW!

N.CONT] MATHOMAL

INSTRUMENTS

When you are developing anew program in LabVIEW, it isagood ideato
invest some time thinking about the high-level design first. If you do, you are
more likely to find that your program can expand in a more manageable
fashion. When you're in this “design phase,” look for existing patterns that fit
your application, and remember that you can base your design on a
combination of patterns. (Don’t hesitate to modify a pattern if it doesn't fit
your problem perfectly.)

However, remember that what you can do with LabVIEW islimited only by
your imagination —if you can’t find a pattern that fits you problem, make up a
new one! (And submit it to the LabVIEW Technical Resource so that the rest
of us can benefit.)

Credits

* The LabVIEW team, especially Kennon Cotton, Rob
Dye, Greg McKaskle, Doug Norman, Greg Richardson,
and Joel Sumner

 LabVIEW Technical Resource

35

