
1



2

Architectures for Designing
LabVIEW™ Applications

Kevin Hogan
Staff Software Engineer – LabVIEW



3

What Are Design Patterns?

“…simple and elegant solutions to specific problems in 
… software design. [They] capture solutions that have 
developed and evolved over time…”
– Design Patterns, Gamma, Helm, Johnson, Vlissides



4

Why Use Design Patterns?

• They represent “tried and true” solutions
• They free you from “reinventing the wheel”

• They make it easier for others to read and modify your 
code

Design patterns represent techniques that have proved themselves useful time 
and time again. They typically have evolved through the efforts of many 
developers and have been fine-tuned for simplicity, maintainability and 
readability. Furthermore, as a pattern gains acceptance, it becomes easier to 
recognize. This recognition alone helps other developers (and you!) to read 
and make changes to your code.



5

UI Event Loop

• Used to handle user interaction, for example:
– User-initiated control value changes
– Mouse moves and clicks

– Keyboard events

• Many advantages over polling:
– Less processor load

– No lost events

The UI event loop is a powerful and efficient method for handling user 
interaction with a LabVIEW program. It’s useful for detecting when a user 
changes a control’s value, moves or clicks the mouse, or presses a key. 
Because the event loop wakes up precisely when an event happens and sleeps 
in between, you don’t have to read control values over and over again (i.e. 
“polling”) in order to detect when a user presses a button. This will allow you 
to use the processor much less without risking loss of interactivity.



6

Standard Event Loop

The standard event loop consists of an event structure contained in a while 
loop. The event structure is configured to have one frame for each category of 
event you’d like to detect. Each frame contains “handling” code that executes 
immediately after an event occurs.

Note that it’s important to make sure that the loop termination condition is 
computed after the handling code completes – one effective method is to 
compute the condition within the event structure. Alternatively, you could use 
a sequence structure to ensure that the event structure fires first, or simply add 
a timeout event to the structure.



7

Standard Event Loop Caveats

• Keep event handling code short and quick:
– You can lock your UI if you take too long!
– Combine this pattern with producer/consumer if you need to

• Terminating the Event Loop:
– Compute the loop end condition in your event handling code 

(best for stand-alone loop)
– Use a sequence to ensure that the loop-end condition 

computes after the event handler fires, or
– Include a timeout event

It’s easy to shoot yourself in the foot with the event loop, though. For instance, 
if an event structure is unable to handle an event that it is registered for (either 
because it’s not running, or because it’s busy handling another event), it will 
lock any UI elements that could produce that event. Effectively, this means 
that if you don’t handle events quickly, you could lock up your entire UI. This 
is easy to get around though – just do the bare minimum of work necessary to 
handle an event as it comes in (“synchronously”), such as graying out other 
controls that will be affected while this event is being handled. Any further 
processing that could delay the event loop should be handled elsewhere. One 
good method is to send the message via a queue to a separate parallel loop –
we’ll see more of that with the “Producer/Consumer” pattern.

Another easy way to make trouble for yourself is to allow the loop termination 
condition to be computed before the event structure fires. This can cause the 
event loop to iterate one more time than you expected, and unless you have 
included a fairly short timeout event (200 ms or less), this can hang your VI on 
exit. To get around this, compute the loop end condition within all of your 
event handling code, use a sequence structure to ensure that the event code 
fires first, or include a timeout event.



8

State Machine

• Used to implement decision-making 
algorithms, for example:
– Diagnostic routines
– Process monitoring and control

• Appropriate for algorithms described by flow 
chart or state diagram

The state machine pattern is one of the most widely recognized and highly 
useful design patterns for LabVIEW.

This pattern neatly implements any algorithm explicitly described by a state 
diagram (flow charts work, too). More precisely, it implements any algorithm 
described by a “Moore machine” – that is, a state machine which performs a 
specific action for each state in the diagram. (Contrast this with the “Mealy 
machine” which performs an action for each transition.) A state machine 
usually illustrates a moderately complex decision making algorithm, such as a 
diagnostic routine or a process monitor.



9

Example State Diagram

Controller for Buck Rogers’ Laser Cannon

Here’s an example diagram for a “Moore” machine that describes a control 
algorithm for a laser cannon – it should fire the cannon continuously without 
allowing it to get dangerously hot. Notice that in this diagram, the “states” 
(ovals) describe actions that are performed when the control process is in that 
state, whereas the “transitions” (arrows) simply describe when and how the 
process can move from one state to another.



10

Standard State Machine

The standard LabVIEW state machine consists of a large while loop, a shift 
register to remember the current state, and a case structure that holds separate 
code to run for each state. (If you use an enum to pass around the value for the 
current state, the pattern becomes much easier to read – and if you use a 
typedef, you only need to edit the typedef once in order to add another state to 
the machine) 

Note that each frame in the case structure must contain code for deciding what 
state the process should go to next. We call this the “transition” code, and 
since there’s more than one standard way to implement that, we’ll leave it for 
the next slide.



11

Transition Code Options

Each of these case structures shows a different standard type of “transition code” – i.e. code 
that chooses the next state for the state machine. 

The top left code clearly shows that the “Init” state has only one transition, and hence goes 
directly to the “Power Up” state without making any decision at all. The top right code 
switches between two possible transitions – the “Init” state will go to the “Shut Down” state if 
the “Stop” button has been pressed, but otherwise it goes to the “Power Up” state. 

The code at the bottom left is a little more complicated, but still a common LabVIEW 
construct. The code for this state returns an array of boolean values, one for each transition we 
could take. Along with that array of boolean values is another array of enum constants 
specifying the new states where each possible transition could go. The index of the first “True” 
boolean in the array corresponds to the index of the new state in the a rray of enums… (Well, 
almost, but you can figure out the details yourself – just remember that the “Search Array” 
function will return –1 if the value is not found). 

The code at the bottom right is functionally equivalent to the code to its left. It consists of a 
case structure embedded in a while loop. The case structure contains one diagram for each 
transition arrow that leaves the current state. Each of these diagrams has two outputs – a 
boolean value which specifies whether or not the transition should be taken, and an 
enumerated constant which specifies the state to which the transition goes. By using the loop 
index as input to the case structure, this code effectively runs through each transition diagram 
one by one, until it finds a diagram with a “TRUE” boolean output and then outputs the new 
state to which that transition goes. (Note that it is important to make sure the last transition 
always outputs a TRUE value). Though this code may appear slightly more complicated than 
the code to the left, it does offer the ability to add names to transitions by “casting” the output 
of the loop index to an enumerated type. This allows you to add “automatic documentation” to 
your transition code.



12

State Machine Demo

• StateMachineExample.vi



13

Master / Slave

• Used to decouple processes that should run 
at different rates (asynchronously)
– for example, responding to user interface 

controls and collecting data simultaneously

The Master/Slave pattern is generally useful when you have two or more processes that you expect to run 
continuously but at different rates. 

For example, suppose you want to write an application that measures and logs a slowly changing voltage once 
every five seconds, acquires a waveform from a transmission line and displays it on a graph every 100 ms, and also 
provides a user interface that allows you to change parameters for each acquisition as well as providing the ability 
to bring up a print dialog to print various controls displayed on the panel. You could, conceivably, put both the 
voltage measurement and the waveform acquisition together in one big loop and only perform the voltage 
measurement on every 50th iteration of the loop. However, if the voltage measurement and log take longer to 
complete than the single acquisition and display of the waveform, then the next iteration of the waveform 
acquisition will be delayed because it cannot begin before all of the code in the previous iteration completes. 
Secondly, this architecture would make it difficult to change th e rate at which waveforms were acquired without 
changing the rate of the voltage log.

The standard “design pattern” approach would be to put the acquisition processes in two separate loops, both of 
them driven by a master loop receiving input from the UI controls. This ensures that each acquisition process will 
not affect the other, and that any delays caused by the user interface (for example, bringing up a dialog), will not 
delay any iteration of the acquisition processes. The power of using this pattern is that it separates the data flow of 
your diagram into independent processes. However, in order for these to communicate, you will have to use some 
form of globally available, shared data. (e.g. locals, globals, occurrences, notifiers, and/or queues). This does break 
LabVIEW’s dataflow paradigm, leaves the door open for race conditions, and incurs a little more overhead than 
passing data by wire (acquiring mutexes, and so on).

The master loop could itself be a simple event loop or a state machine that incorporates event gathering as one of 
its states. Alternatively, the master loop could even start up a separate event loop that runs independently from it. 
This last pattern would probably be the best choice if the master loop is a state machine that gathers needs to gather 
UI event information in more than one state. Most importantly, you need to make sure you specify at the outset that 
only one loop will write to any given piece of shared data. Typically, the master loop writes to all shared data, and 
slave loops read the data.



14

Master / Slave – The Big Picture

The big picture – one master loop drives one or more slave loops, 
communicating via some shared data depot. 

Variations on this include having loop A control loop B which controls loop C, 
and so on. You could also design “Peer loops” which communicate back and 
forth to each other, but you must make sure that two loops may not write to the 
same data depot at the same time. A good policy is to make sure that no more 
than one loop may write to any given piece of shared data.



15

Master / Slave Synchronization

Sometimes a Master/Slave application may require the slave loop to be halted 
while the master loop performs initialization or reset routines. This can often 
be done neatly by using occurrences.

The above diagram shows an example that delays the start of the slave loop 
until an initialization routine is completed. 



16

Master / Slave Example

• SynchLoops.vi

This example is slightly more complicated than the previous slide – it uses 
occurrences to not only delay the start of the slave loops, but also to turn them 
on or off during the execution of the program.



17

Master / Slave – Key Elements

• Consists of parallel loops
– Writer loop can communicate with reader via 

locals, globals, occurrences, notifiers, queues

• Writer loops 
– It is best for only one loop to write to any given 

local or global variable
– If both loops must write to a variable, use a 

semaphore to prevent race conditions

The Master/Slave pattern consists of multiple parallel loops, each of which 
may drive processes at different rates. Since communication of data between 
these processes breaks data flow, it must be done by writing to and reading 
from globally available data pools – i.e. locals, globals, occurrences, notifiers 
or queues.

Be careful, however, if more than one loop must write to a local or a global 
variable. If both loops try to write to the variable at the same time, there’s no 
telling which value may ultimately get written! (This is known as a race 
condition.) To avoid this situation, place an “acquire/release semaphore” pair 
around any code that writes to the global to ensure that no one attempts to 
write to it at the same time.



18

Producer / Consumer

• Used to decouple processes that produce and 
consume data at different rates

• Consists of parallel loops
– One loop writes data to a queue while the other reads

The Producer/Consumer pattern is really just a subclass of the Master/Slave 
pattern where the main communication between the loops is via queue. Using 
queues rather than globals to pass data provides a buffering effect, but if the 
data writer occasionally produces data faster than the reader can process it, 
data will not be lost. This can be especially useful for handling UI events that 
take a long time to complete (e.g. printing in response to a user).



19

Producer / Consumer Big Picture

One loop produces data (via computation, DAQ, and so on) and puts the data 
in the queue.

The other loop waits until there is data in the queue. Then it pulls the first 
element out of the queue and processes it.

It just doesn’t get any simpler than this, folks!



20

Producer / Consumer Example

• ProduceConsume.vi



21

Queued Message Handler

• Often handles events generated by the 
user interface, but not limited to this.

• Useful when the system handles input 
events with a well-defined sequence of 
actions

• Similar to the Event Loop – but allows finer 
control over message order.

Another popular pattern is the Queued Message Handler. (This pattern is often referred to as a 
“Queued State Machine”, but because it need not adhere strictly to a state diagram, I prefer to 
give it a different name to avoid confusion). This pattern has been discussed quite a bit in 
various issues of LabVIEW Technical Resource (LTR). It is most commonly used to 
implement code for a user interface, but you certainly don’t need to limit its use to this!

It is important to note that the behavior of the Message Handler is very similar to the event 
loop – various messages (events) are queued up, and they are handled one by one in the order 
that they exist in the queue. Furthermore, each sub-diagram in this pattern represents a 
handling routine, just like the Event Loop.

So what’s the difference? Why choose one of these over the other?

Here’s the scoop:

Event Loop –

+ simpler to configure

- handles events in FIFO (First In, First Out) order

- limited to UI messaging in LV 6.1

Queued Message Handler –

+ allows more control over order in which messages get handled (useful for error 
handling/recovery)

+ handles any user defined message

+ can be configured to work in parallel with Event Loop, handling messages from the UI 
asynchronously

- more work for initial setup



22

Standard Queued Message Handler

The Queued Message Handler consists of a large “while” loop, an internal 
“Case” structure, and a shift register on the while loop that holds the queued 
messages. (note that if you use a LabVIEW queue rather than an array of 
strings, you will not need the shift register). For each message that may be 
sent, the case structure contains one diagram with appropriate code to handle 
the message. The case structure may also have a default diagram which will 
queue up new events if the queue is empty. 

Each iteration of the loop removes the top message from the queue and runs 
the proper handling diagram in the case structure. Handlers that have a 
“Default” or “No Event” frame will execute this code when the queue is 
empty. The loop terminates when the “Exit” message comes to the top of the 
queue.



23

Queued Message Handler Demo

• QueuedMessageHandler.vi



24

Queued Message Handler – Key Points

• Terminate the loop by checking the latest 
message, not by polling a control

• You may generate new messages when 
handling a message – but be careful!

Two key points to remember when creating a Queued Message Handler:

First, the loop should be terminated by checking the latest message rather than 
polling a control. This architecture allows you to execute any necessary 
cleanup code (for example, shutting down parallel loops) before shutting down 
the main loop.

Second, you may generate new messages inside the handler code for a 
message. This gives you a lot of flexibility in designing event handling code, 
but it also makes it possible to generate an infinite cascade of messages which 
would effectively hang the user interface. A good rule of thumb might be to 
require that messages generated by a handler routine should never generate 
new messages of their own.



25

“Daemon”

• Used to create and launch 
applications that run invisibly in the 
background, for example:
– Auto-save utility
– Periodic back-up service
– Garbage collection of temporary files

• Typically perform low-priority 
monitoring and/or maintenance 
services

The “Daemon” pattern is an especially powerful concept in LabVIEW – it 
allows you to run an invisible VI in the background to take care of routine 
monitoring and/or maintenance services. Combined with VI Server, the 
daemon pattern allows you to create some truly amazing applications.



26

Standard Self-launching Daemon

• Key point – a Daemon must keep an open reference to 
itself to keep from being purged

Here is some sample code to help you create self-launching daemons. Notice 
that the daemon obtains a reference to itself before closing its front panel – this 
prevents LabVIEW from removing it from memory before it has a chance to 
run the daemon code. 

Note, however, that this daemon must briefly show its front panel while it 
obtains a self-reference on launch – this problem can be resolved by using a 
“launched” daemon pattern shown on the next slide.



27

Standard Launched Daemon

• Key points –
launcher must 
transfer 
responsibility for 
reference to 
daemon VI.

• Launcher must not 
close reference to 
daemon VI

Here is some sample code to create diagrams for a daemon launcher and the 
launched daemon itself. Note that the daemon does not have to obtain a 
reference to itself – this is because the launcher obtained the reference and 
then just transferred responsibility for closing the reference to the daemon VI.

To transfer ownership of the daemon VI’s reference, set “Auto Dispose Ref” 
to true when you run the daemon. It is very important that the launcher does 
not close the reference to the daemon VI.



28

Launched Daemon Example

• LaunchSneezy.vi



29

Proxy

• Used to defer load-time cost of infrequently called sub-
VIs

• Used to hide details of remote communication

The Proxy pattern is generally used to defer loading of subVIs until they are 
needed by your program. This technique, sometimes called “lazy loading,” can 
dramatically decrease the initial time it takes to load your application. Note, 
however, that this has the drawback of incurring a slight delay the first time 
you call each deferred subVI.

In addition, the Proxy can be used to simplify the creation of a distributed 
application by hiding the details of the remote communication.



30

Standard Proxy 

• Stores reference to real VI
• Loads the VI only on first call

A proxy VI stores a reference to the real VI – you can do this in LabVIEW by 
using an uninitialized shift register.

The proxy first attempts to call the real VI by reference. If this fails (usually 
meaning the reference is bad), the proxy attempts to obtain a valid reference to 
the VI and call it again. 

Note that since the Proxy uses a Call By Reference node to call the subVI, you 
could easily re-configure it to call a subVI located on a separate machine in 
your network. This lets you move quickly and easily from a single machine 
application to a distributed app without having to modify your main 
application at all!



31

Splash Screen (Launcher)

• Used to replace the LabVIEW load dialog with a 
custom dialog

• Displays application name, version, and load progress 
as large application is loaded

• Closes itself after application starts running 

The Splash Screen (or Launcher) pattern allows you to replace LabVIEW’s
load dialog with a custom window tailored specifically for your application. 
Like LabVIEW’s load dialog, it can be configured to display how much of the 
application has been loaded.



32

Standard Launcher

This diagram (taken from LabVIEW Technical Resource), is much less 
complicated than it looks. It assumes that all of the subVIs for your application 
are stored in one directory, and loads them all one by one. As each subVI is 
loaded, an indicator on the Launcher changes to show load progress. It is 
important that the top level VI is not loaded in this step because loading it 
would load all of the subVIs without updating the launch screen. The launcher 
then loads the top level VI. It opens the front panel of the top level VI so that 
the application is not purged from memory when the launcher closes. Finally, 
the launcher runs the application and, without waiting for the app to finish, 
closes its own front panel. As long as no other VI has a reference to the 
launcher, this will cause the launcher to exit memory. 



33

Patterns Wrap-up

• UI Event Loop
• State machine
• Master/slave
• Producer/consumer
• Queued message handler
• Daemon
• Proxy
• Splash screen launcher



34

When Should You Use Them?

• Whenever you can find one that fits your problem
• Do not assume that the patterns presented here are 
the only solutions available in LabVIEW!

When you are developing a new program in LabVIEW, it is a good idea to 
invest some time thinking about the high-level design first. If you do, you are 
more likely to find that your program can expand in a more manageable 
fashion. When you’re in this “design phase,” look for existing patterns that fit 
your application, and remember that you can base your design on a 
combination of patterns. (Don’t hesitate to modify a pattern if it doesn’t fit 
your problem perfectly.) 

However, remember that what you can do with LabVIEW is limited only by 
your imagination – if you can’t find a pattern that fits you problem, make up a 
new one! (And submit it to the LabVIEW Technical Resource so that the rest 
of us can benefit.)



35

Credits

• The LabVIEW team, especially Kennon Cotton, Rob 
Dye, Greg McKaskle, Doug Norman, Greg Richardson, 
and Joel Sumner

• LabVIEW Technical Resource


